
Making Waves for Surf’s Up 
Rob Bredow Daniel Kramer Matt Hausman Peter Shinners Deborah Carlson John Clark

 
 

                 Erick Miller   
     Sony Pictures Imageworks

For the Sony Pictures Animation feature film, Surf’s Up, 
Imageworks needed to create a realistic hero CG ocean and wave 
system. To create approximately half of the shots in our film, we
required the look and feel of real masses of curling, breaking 
water, all the dynamic aspects of crashing breaking whitewater 
and turbulent surface ripples, foam across and over the face of the 
wave – yet still it needed to be interactively used in animation to 
compose camera angles, define shot lengths and allow 100% 
interaction with fully animated surfing characters.    
 
1 Solving A Fluid Problem
Fluid dynamics and fluid simulation based approaches, as techno-
appealing as they seemed, were quickly ruled out due to their 
processor intensive simulation based nature. Full predictability of 
the fluid surface produced for animators was needed to create 
consistent key framed animations along with fully animated CG 
characters.  The wave was broken down in an analytical and 
procedural layered approach, thus decoupling it from time based
methods and, as a result, made it a hero CG character instead of 
an effects element of the film.  Ultimately, a hybrid system was 
built, manipulated virtually in real-time by artists and animators.  
Shots could be built and composed based on size and speed of 
water, allowing accurate in-camera previews for surf moves to be 
skillfully maneuvered across the faces of the foaming waves in a 
fast, predictable, and realistic manner - and later using the
animation to analytically interpolate dynamic information used for 
advanced shaders and effects applied to the final rendered fluid 
surface. 
 
2    Anatomy of a Procedural Wave System 
The decision for the wave to be a character meant that we 
determine, classify and create controls that procedurally drive 
something as complex as a fluid surface with only a handful of
simplified interfaces exposed to the animators.  We broke this 
down into three very general categories 
1. Predefined 2-D wave profiles create a 4-D sampled surface 

interpolation, with the third dimension being the length 
parameter, and the fourth dimension being decoupled time.  

2. Interface controls to modify and animate surface based fluid 
interpolation are simple UI manipulators that interactively
drive the fourth dimension of decoupled time, along with 
sampled shape parameters that modify interpolated profiles.  

3. Dynamic texture, water surface, wake trail and splashing, 
crashing real-time particle preview engines that are also able 
to be decoupled from their time dependencies. 

 
3     Riding The Wave 
The first thing to remember while creating this fluid system was 
that animators would be using it every day to set keyframes and to
surf around on.  A special geometric constraint was created within 
the published wave character called a wave rider, which allowed 
the user to freely move a surfboard across the wave automatically 
staying “above water” but not distorting as the wave face itself 
changes shape and shifted coordinate values.  In an attempt to 
simplify & consolidate controls, a user interface was designed 
called the “Wave Wizard,” where an animation library of surfer
approved wave animations, as well as the switching and preview 
controls for the wave modes, could be accessed by the user.  
Animation attributes themselves - allowing creation of all the 
variations of wave type controls, were logically named, such as 
“pipeline,” “mavericks,” “spilling breaker,” etc.  The activation of 
these seemingly simple attributes, though, set in motion a large 
array of settings that not only changed the appearance of the 

wave, they changed surface interpolation parameters, look-dev 
settings, whitewater crash settings, as well as a very large array of 
predefined data sets that feed the wave node its data for the 
algorithmic interpolation scheme.  Some of the finer typed 
controls shared across all wave types were lip up/down, 
forward/back, trough depth, shoulder size, tube depth, tube length, 
front and back length, non-uniform scale.  The customized per-
wave type shape controls were also time interpolated, created and 
carefully analyzed to resemble sampled time splices of the each 
wave type’s actual variations when it’s specific shape changes. 

 © 2007 Sony Pictures Imageworks Inc.   
4     Interpolating A Fluid Solution 
4-D surface interpolation was exclusively handled using spline 
interpolation. Initial experiments were done with rotation based 
approaches, but in the end the spline result was very appealing 
because it was an efficient interpolation scheme, and yielded a
nice fluid curve tangent that guaranteed to interpolate directly 
through actual data being sampled.  Finally, the wave generation 
interpolation algorithm not only output the surface, but also 
attached itself to any arbitrary value assigned to the incoming 
wave profiles – this allowed any wave to later have predefined 
attributes such as “energy,” “time,” “speed,” “crash,” etc. all 
which would automatically be output as interpolated per vertex
gradient values according to what they were defined as on the 
time sampled input profiles.  

5     Ocean and Water Previews 
The Wave Wizard UI contained an option for previewing texture 
or particle previews, called Wave Blast, which would enable 
certain controls on the rig and write out a flip book of images.   
Texture and speed preview modes were available via in-rig
hardware shading which previewed the interpolated texture 
reference space, so that the animator had a pixel accurate 
representation of the animated texture space pre-render, which 
created the appearance of water flowing over the surface.  The 
ability to visualize the wake trail coming off the back of the surf 
board was built in, via wave riders and a time based lookup script 
using a procedural geometric wrapping technique. The rig
contained ray intersection along the lip, called the crash curve, 
which was interpolated with quaternions of “spill vectors” to 
determine its ray direction, and then output interpolated energy 
data into an open GL particle preview node which displayed real-
time preview of crashing white water particles in-scene.  Finally, 
the actual surface turbulence of the water could be previewed 
within the rig via a custom deformer called the Wave Train node 
that read in animated displacement textures and performed a 
vertex displacement that matched accurately to the displacement 
shader used to render the ocean water, all within an animator’s 
scene. 

________________________________ 
e-mail: erickmiller@yahoo.com 

 


